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The paper deals with the problem of motion of a dynamically symmetric rig- 
id body about the center of mass, near the collinear libration point L, of 
the bounded circular three-body (material points) problem. It is assumed 

that the periodic orbit of the center of mass of the rigid body represents a seg- 

ment of a straight line, perpendicular to the plane of rotation of the principal 
attractive masses and passing through L, . Two types or rotation of the rig- 
id body stationary with respect to the orbital coordinate system are found, and 
their stability studied in the first approximation. 

1. F o I m u 1 a t i o n o f t h e p r o b 1 e m. A rotational motion of a rigid 
body the center of mass of which moves along a periodic orbit near the collinear libra- 

tion point L, , takes place under the action of gravitational moments depending on 

the material points m, and m, . The linear dimensions of the body are small com- 

pared with the distances separating its center of mass 0 from the points m, and m,, 
therefore we assume that the motion of the rigid body relative to its center of mass 
does not affect the motion of the center of mass itself. We shall also assume that the 

orbit of the center of mass 0 of the rigid body is defined within the frameworkof the 

bounded circular three-body (or more accurately three-point ml , m2 and 0 ) 
problem. 

Fig. 1. 
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Figure 1 depicts the L,s,y,z, -coordinate system. Its J&Z, -axis is directed 
along the line arms , the L,yl -axis is situated in the plane of motions of the 
principal attracting masses m, and m, and points in the direction of their rotation, 
and Lsz, -axis complements the L,z, and L,y, axes to form a right coordinate 
system. The arrow shows the direction of rotation of m, and ma , and n denot- 

es the angUk velocity of rOtatiOn of mi and ms . For thesystem Earth-Moon n= 
0.23 radians/24 hours, and this corresponds to the period of rotation of the Moon 

about the Earth (sidereal month) equal to 27.3 days. R denotes the distance between 

the points m, and m2 , and pR the distance between m2 and L, . The quant- 
ity p is a root of a fifth degree polynomial with the coefficients depending on ~1 . 
For the system Earth-Moon, p = m2 / (m, f m2) = 0.01215 and p = 0.1678. 

In the bounded, circular problem of three material points where the coordinatesys- 
tern rotates together with m, and m, , there exist near L, two, two-parameter 

families of periodic motions of a point of infinitesimal mass [l] (in the present case 

the point is represented by the center of mass 0 of the rigid body). If we neglect in 

the equations of motion of the bounded problem of three points the nonlinear terms 

with respect to the deviations from L, , then the trajectory of one of the periodic 

motions above will represent a straight line segment perpendicular to the plane of 
rotation of the points m, and m2 and passing through L, . Let us write the 

equation of this trajectory in the form 

5i s 0, y, = 0, zi = ER sin w&t (1.1) 

where E is an arbitrary small parameter representing the constant of integration. The 
other constant of integration is assumed to be zero. 

For the system Earth -Moon we have CO, = 1.786, and this corresponds to the 
period of motion of a point with infinitesimal mass along the orbit (1. l), equal to 

15.3 days. 

We shall assume that the center of mass 0 of the rigid body moves along the 

orbit (1.1) and we neglect in all equations terms of the order higher than one in E . 
It should be noted that the periodic motions of a point with infinitesimal mass are 

unstable near L, . In spite of this, the problem of motion of a rigid body relative 
to the center of mass formulated here is of interest not only from the theoretical point 

of view, but also in practice. The motion of the center of mass of a rigid body along 
the unstable periodic orbit (1.1) could be maintained e. g. by a controlling accelera- 
tion the vector of which would pass through the center of the body. Diverse practical 

examples using the libration points of the three-body problem are given in e. g. [2], 

2. Equations of motion of a rigid body relative 
t 3 i t s c e n t e r o f m a s s, The figure shows the orbital OXYZ -coord- 
inate system. The system has its origin at the center of mass of the rigid body which 
remains, by definition, on the L,z, -axis at all times. The directions of the OX, 

OY and OZ axes coincide with the directions of the L2x1, L2yl and L2Zl 

axes respecively. The Ox, Oy and Oz axes of the coordinate system associat- 
ed with the rigid body and not shown in Figure, coincide with the principal axes of 
Inertia of the body, and the Oz -axis is directed along the dynamic symmetry axis 
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of the body. The angles of precession 9 , nut&ion 6 and characteristic rotation 
Cp define the relative orientation of the associated and the orbital coordinate systems. 

We shall write the equations of motion of the rigid body relative to its center of 
mass in the form of the Lagrange equations of second kind. Let A be the equatorial, 
andc the polar moment of inertia of the body. Then the kinetic energy of the body 
will be given by the formula 

T = l/z A (ps + 4”) + Va Cr” (2.9 

where p, 4 and r- are the projections of the absolute angular velocity of the body 
onto the principal central axes of inertia Ox, Oy and Oz respectively. We note 

that by virtue of the dynamic symmetry of the body the quantity r = ($,‘-+- n) cos 0 
+ cp’ will represent the integral of motion. Let us put r = r-0 = const. The 

force function U can be written in the form 

(2.2) 

where ai are the cosines of the an&s formed by the directions of the radius vectors 

ri of the center of mass of the body relative to the points mi and the OZ -axis 
of the associated coordinate system, ki = fmr and f is the universal gravitational 
constant. We have the following relations: 

f (m, + m,) = n2R3, kl = (1 - p) n2R3, k, = pn2R3 

It can be shown that the equations 

rl = (1 4 P) R, r3 = pR 

al = sin$sinO+&cosf3sin0znt 

a2 = sin$sinO +$cosBsin*& 

(3.3) 

hold to within the quantities of the order of e . The relations (2.1) -( 2.3) yield the 
Lagrange’s function L = 2” + U and hence the equations of motion of the rigid 

body r&at&e to the center of mass. Omitting the standard manipulations, we give 

the equations in their final form 

sin f+hJ+’ + 2 cos 8 (9’ -+ 1) 8’ - ab0’ + 
3 (a - 1) cos $I (A, sin 9 sin 8 -I- &As cos 0 sin 0,~) == 0 

8” - sin B cos 6 (9 + 1)2 + ab sin 8 (Q’ -j- 1) + 
3 (a - 1) sin 9 (A, sin -I# sin 0 cos 6 + 

eA, cos 20 sin 0,~) = 0 

(2.4) 

(k = 2,3) 

where a prime denotes differentiation with respect to the independent variable Z = 

nt. 

3. Two types of the steady rotations, Thepositionsof 
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equilibrium II, = const, 8 = con& of the system (2.4) (provided that they exist) 
correspond to steady rotations of the rigid body in the orbital coordinate system. The 
dynamic symmetry axis of the body occupies for these rotations a fixed position in the 
orbital coordinate system, and the rigid body itself rotates about the symmetry axis 

with a constant angular velocity of cp’ = (b - COS 0) n. 
Let us consider the problem of existence of the steady rotations. Putting $’ = 8’ 

= $,” = fJ” G 0 in the equations of motion (2.4), we obtain a system of equations 
for determining the positions of equilibrium 9 = con&, 8 = OOnst (we assume 

that a # 1, i.e. that the inertia ellipsoid of the rigid body is not a sphere) 

cos ‘II, (A, sin I$ sin 8 + &A3 cos 8 sin ozr) = 0 (3.1) 

sin 8 (ab - cos e) + 3 (a - 1) sin I+ (A, sin 9 sin 8 cos 8 + 
eA, cos 28 sin 0,~) = 0 

It is essential that the system (3.1) become an identity in z when the angles 4 and 

8 are constant. From this we obtain two types of steady rotations of a rigid body. 
A rotation of the first type exists only when b = 0 and the constant values of 

the angles $J,, and e0 satisfy the equdtions 

sin $a = 0, cos 8, = 0 (3.2) 

For the motions (3.2) the Oz -axis of the associated coordinate system lies on the 
OY -axis of the orbital coordinate system. Consequently, the symmetry axis of the 

rigid body remains, during its whole motion, in a plane passing through La and 
perpendicular to the line mlms, and remains parallel to the plane of rotation of the 
points ml and m2 . At the same time, the rigid body does not rotate about its 
symmetry axis, and its center of mass executes a periodic motion along the normal to 
the plane containing the orbits of the points m, and ma and passing through L,. 

A steady rotation of the second type exists when the parameters a and b are 
connected by the relation 

Ub + [3 (U - 1) A, - 11 COS 8, = o (3.3) 

and the constant values of the angles $,, and 8s satisfy the equations 

cos q0 = 0: cos 28, = 0 (3.4) 

For the motions (3.4) the Oz -axis of the associated coordinate system is perpendic- 
ular to the OY -axis of the orbital system and is directed along the bisectrix of the 

angle X02. Consequently the symmetry axis of the rigid body lies, during the 
whole of its motion, in a plane passing through the points ml and m2 , is perpendi- 
cular to the plane of their rotation, and forms the angle of a~, / 4 with the latter. 

In what follows, we shall assume that $,, = n, 80 = n / 2 for the steady rota- 

tions of the first type, and I#,, = n / 2, 8, = n / 4 for the steady rotations of the 
second type. Other values of the angles $a and 8, satisfying the equations (3.2) 
and (3.4), can be reduced to the values quoted above by altering the direction of the 
axis of the associated coordinate system. 

4. Stability of the steady rotation of the first 

type. We consider the stability of the steady rotations of the first type obtained 
above, limiting ourselves to the stability in the first approximation. Let ‘II, and 8 
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denote the deviations of the precession and nut&ion angles from their equilibrium 

values *a and 0,, . For a steady rotation of the first type the system or equations 
of perturbed motion, will be as follows in the first approximation: 

+” + 3 (a - 1) A, $ f ~3 (a - 1) A, sin 0,‘60 = 0 (4.1) 
0” + 8 + 83 (a - 1) A, sin w,r$ = 0 

From (4.1) we see that when E = 0 , stability will occur provided that a> 1. 
When e # 0 , instability caused by a parametric resonance becomes possible. Let 

or = 1/3(u - l)A, and 0s = 1 be the oscillation eigenfrequencies in the 
system (4.1) with E = 0. Since for E = 0 the system (4.1) has obviously a sign- 
definite energy integral, the system can become unstable for t # 0 only near 
such values of the parameters for which the quantities 20, and 20, , or wt + 
a2 , are multiples of 0, [4]. 

It can be shown that the inequalities 1.252 < 0, < 2 hold for all /.r, hence 
it follows that the quantity 20, cannot be a multiple of 0, . Restricting ourselv- 

es to the first order approximation in E we find, that instability is possible in the case 

under consideration, if either 201, or or $ ws is equal to o, . The correspond- 
ing values of the parameter U are: 

13 
a1 = 12, u2 = 

40,2 - 26+ + 1 (4.2) 
30~2 

When a# 0, the regions of instability in the a, E -plane should emerge, gen- 
erally speaking, from the points of the axis a corresponding to the values a, and 

U2 l 
The boundaries of these regions can’be found by writing e. g. the system(4.1) 

in the Hamiltonian form and applying a canonical transformation which would elimin- 

ate from the Hamiltonian the nonresonant terms. A straightforward analysis of the 
resulting simplified Hamiltonian will then yield the region of stability and instability 

of the system (4.1). The computations become particularly simple when E = 0 and 
the linear system of equations of perturbed motion is reduced to equations describing 

the oscillation of oscillators not coupled to each other. This is precisely what happens 

in the case of the equations (4.1). 
Computations have shown that in the first approximation in E the region of instab- 

ility becomes apparent in the neighborhood of a = a, , but not of U = Ul. It2 

boundaries are given by the equations 

u=a2+E 
(oz- If’2 A 

- 30*4 3 (4.3) 

For the system Earth -Moon A, = 15.8452 and the boundaries (4.3) of the 

region of instability are 
a = 1.065 & 0.284~ 

5. Stability of the steady rotations of the aec- 

ond type. The linearized equations of perturbed motion for a steady rotation 

of the second type have the form 

$” + (y + 1) 0’ - ~9 - eyAs / A, sin o# = 0 
(5.1) 
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0” - l/a (Y + 1) 4’ - l/a (y - i) 0 - s2yA, / A, sin O,TO = 0 

y = 3 (a - 1) A, 

We shall first consider the stability of the system (5.1) for E = 0. when E = 0 , 
the root of its characteristic equation can easily be shown to be purely imaginary only 

when the inequality Y (Y - 1) > 0 holds. The latter inequality provides the nec- 

essary conditions of stability of the system (5.1) for e = 0 . If Y (Y - 1) # 2, 
then this condition will also become sufficient, since in this case the frequencies wf 

(i = 1, 2) of the linear oscillations will differ from each other. The frequencies 

satisfy the equation 
2 04 - (y2 - Y + 2) 0” + Y (Y - 1) = 0 (5.2) 

we shall assume that or > CD, > 0. Then 

01 = I, W, = ty (y - 1) / 21”1, 0 < y (y - 1) < 2 (5.3) 

01 = [Y (Y - 1)/ 21'$ 02 = 1, y (y - 1) > 2 

The regions of stability can also be conveniently described with help of the inertial 
parameter a of the rigid body. Using this approach we find, that we have stability 
when e = 0 , provided that a belongs either to region 1 consisting of two intervals 

O(a<1-1/(3A,), 1-1/(3A,)<a<l 

or to region 2 also consisting of two intervals 

~+~/(3As)<a<1+2/(3As), 1+2/(3As)<a<2 

we note that the values a = 1 - 1 / (3 AJ and a = 1 + 2 l(3Aa) of the 
parameter are excluded from our consideration, since they correspond to the case of 

identical frequencies (oi = os = 1). 

Let us now assume that the parameter E is not zero. To find the regions of instab- 

ility is it convenient to write the equations (5.1) in the Hamiltonian form, choosing 

the canonical variablesin such a manner that when E = 0 , then the Hamiltonian 

function becomes a sum of Hamiltonians of two independent oscillators with frequenc- 
ies of or and os . Assuming in this case 

94 = $7 $3 = 0 

p* = 9’ + l/s (Y + 1) 8, PI3 = 2 0’ - ‘/a (y + 1) qJ 
and performing a canonical change of variables according to the algorithm given in 

151, 

q* = - 2 (Y + 1) hw?I -+ %%!7,~ (5.4) 

% = 2 [(Y + 018) %Pl + (Y + (47 WSI 

Ps = (Y + 1) MY - 47 XlPl + (Y - %*) %Pa~ 
PO = UY - 11% - 4 0,21 x,o,q, * I(y - I)% - 4 Coss1 x,o,q~ 

(Xi = (4 Or 1 (y + 1) I(y + 2) @ia - ySl 1 }-‘Is, i = 1, 2) 

we obtain the Hamiltonian function of the linearized equations of perturbed motion 
in the form 
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The upper sign in the formulas (5.4) and (5.5) refers to the region 1, and the lower 
sign to the region 2. 

Next we consider the problem of parametric resonance for e # 0. we deal 
first with region 1 where for E = 0 we have a sign definite energy integral H” = 
const. In the first approximation in E , an instability may occur near those values 
of a , for which one of the following resonance relationships holds: 20, = oz, 20, 
= 02 or WI + 0, = w,. An analysis carried out with the help of (5.2) has 

shown that the first of the above resonance relationships is impossible in region 1, 
while the second and third relationship are realized, respectively, for 

as=l+ 
1 - [I + 20 2]“2 * 1 - [I + 8 (o - I)+ 

6ti,2 ’ 
a4=i+ 

6~0~2’ 

The boundaries of the region of instability originating at the point a = us are 
described, as shown by the computations, by 

(5. ‘5) 

For the system Earth -Moon, the above relations become 

a = 0.91 + 0.008~ 

The region of instability originating at the point a = u4, has the following bound- 

aries: 

a= a*&e2 IY I I4(Y + ml) (Y + 022) -(Y + iI2 02lw2 A (5.7) 
0,2 I d (ml+ 02wa I 3 

and for the system Earth -Moon these boundaries become 
a = 0.925 -& 0.37e 

Let us now consider region 2 where the integral H” = const is not sign definite 

when E = 0 . In the first approximation in E an instability is possible near the 

values of a for which one of the following resonance relations holds: 20, I- co*, 
20, = cl&, 01- 02 = 0,. An analysis has shown that the first resonance in region 

2 is impossible, while the second and third resonances are possible. The corresponding 

values of the parameter a are 

a,=*+ 
1 + [i + 20$‘2 1 + [I $ 8 (o + I)+ 

60~2 , a3==l+ 60~2’ 

The boundaries of the region of instability emerging from the point a5 are given 
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by (5.7) in which aa is replaced by a5 , For the system Earth -Moon these equa- 
tions have the form 

a = 1.194 -f- 7.164~ - 

The boundaries of instability near the resonance value a = a8 are given by (5.7) 
in which a, and 0% are replaced by a6 and -0, respectively. For the system 
Earth -Moon these boundaries are given by the equations 

a = 1.467 +3.095~ - 
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